

Recherches agronomiques

BREEDING POTATOES NOWADAYS: an overview of the current situation

Dr Ir Rolot Jean-Louis

Annual Session of Scientific Papers « New challenges in research on potato, sugar beet and medicinal plants in term of climatic global and economic changes »

Brasov, 25th november 2010

Centre wallon de

Centre wallon de Recherches agronomiques – Section Systèmes agricoles Rue de Serpont, 100 - B – 6800 LIBRAMONT - Tél :++ 32 (0) 61 23 10 10 - Fax : ++ 32 (0) 61 23 10 28 systagri@cra.wallonie.be - http://cra.wallonie.be

Potato Production Areas of Cultivation and Average Yields

Each dot estimates 1,000 hectares. Potato yields, in tons per hectare:

. E	ha	Harvest (to)	Yield (to/ha)	Fiom
Africa	1.500.000	16.320.000	10,9	
Asia/Oceania	8.740.000	137.200.000	15,7	
Latin America	971.000	16.124.000	16,6	
North America	615.000	22.626.000	36,8	
Europe	7.490.000	129.390.000	17,3	
	19.316.000	321.660.000	16.7	FAOSTAT 2007

From C

Centre wallon de Recherches agronomiques

Potato area evolution in developed and developing countries

BREEDING OBJECTIVES

Global objective:

 ✓ produce and market new varieties better suited than the old ones under the conditions in which they are used.

More specific but still general:

- ✓ better yield
- ✓ better quality use
- \checkmark better resistance against diseases and pests
- \checkmark less sensitive to the environment
- ✓ good nutritional characteristics

BREEDING OBJECTIVES

Adapted to the environment and markets constraints :

- ✓ robust varieties in less developed countries:
 - Iate blight resistance
 - viruses resistance
 - storage diseases resistance
 - better agri-chemical use efficiency

✓ well adapted on the markets requirements in developed countries:

- fresh market:
 - tuber visual aspect (shape, eyes depth, skin colour, flesh colour...),
 - cooking behavior
- processing market:
 - tuber chemical composition (dry matter, reducing sugars,...)
- both: antioxydants, potassium, Vitamin C, glycemic index,...

BREEDING OBJECTIVES

Regional aspects :

- ✓ warmer and drier regions:
 - tolerance to heat and drought stresses

✓ cooler and more wet regions:

- tolerance to late blight
- ✓ Africa:
 - tolerance to tuber moth,
 - Brown rot disease (Central Africa)

✓ Regions of intensive cropping (i.e West Europe):

- resistance to pectynolitic bacteria (Dickeya sp.)
- nematode resistance

✓ Regions with two or more cropping seasons (Africa, Asia):

short dormancy period

BREEDING OBJECTIVES: conclusions

POTATO BREEDING: bottelnecks

Narrow genetic base.

- ✓ european cultivated *Solanum tuberosum*
- ✓ originated from few specimens introduced in Europe in the 16th century, then severe inbreeding by self pollination leading to the long days adapted european potato
- ✓ broadening of the genetic base in the begining of 20th century: introgression of new alleles from wild species

Multiple ploidy levels in the tuber-bearing Solanum species:

✓ from diploids (2n=2x=24) to hexaploids (2n=6x=72)
 ✓ incompatibility barriers between different ploidy levels

POTATO BREEDING: bottelnecks

Tetraploidy level of the european cultivated potato.

- ✓ 2n=4X=48 (four pairs of 12 chromosomes)
- \checkmark four alleles possibly different for one locus
- ✓ high heterozygosity level leading, by crossing two tetra-allelic parents, to a lot of genotypes in the hybrid progeny
- ✓ Quality traits are usually controlled by polygenes
- ✓ Genotype x environment interaction

⇒With traditional breeding, selecting a desirable genotype is a time-consuming process

Reduction of the ploidy level.

- ✓ Reduction of the tetraploid level to the diploid one allows:
 - to cross the cultivated potato more easily with the wild species (most of them are diploids),
 - to manage more easily the heterozygosity (2 allelic forms in place of 4)
- ✓ Techniques: production of dihaploids from tetraploids:
 - using anther or pollen culture
 - using « diploids inducers » like some Solanum phureja
- ✓ Dihaploids x Diploids, then selected progenies are redoubled by chemical treatment = more chance to produce genotypes with a higher level of homozygosity.
- ⇒ Introducing new genes and increasing the gene pool of the cultivated tetraploid potato is easier but still time consuming

Recherches agronomique:

Biotechnologies development last 2 decades.

✓ *In vitro* potato micropropagation:

- Safe in laboratory maintenance and fast multiplication of the selected clones,
- Opened the ways for:
 - somaclonal variation techniques
 - protoplast fusion
 - ploidy reduction by anther/microspore culture
 - genetic modification by artificial insertion of particular genes into the potato genome

- ✓ Molecular markers assisted selection (MAS):
 - fragments of DNA sequence associated with a specific part of the genome, i.e a part coding for qualitative or/and quantitative trait
 - early selection of individuals with superior alleles using these markers reduces considerably the breeder's work: avoids resistance tests, field assays,...
 - numerous quantitative and qualitative traits already mapped on the potato genome: late blight, root cyst nematode, viruses, wart, plant maturity, tuber starch content,...

= « precision breeding »

✓ Genes cloning and insertion: artificial genetic modifications

- Once sequences of genes of interest known
- Cloning them
- introducing them in the genome using « Agrobacterium tumefaciens » as insertion vector
- Many examples:
 - The « Durable resistance to Phytophthora » dutch program (DuRPh)

- **Biotechnologies development last 2 decades**
- Genes cloning and insertion: artificial genetic modifications
 The « Durable resistance to *Phytophthora* » dutch program (DuRPh):
 - using only genes of interest from the crop itself and/or from crossable species: cys-genes and not trans-genes
 - identification of usefull R genes in wild species, isolation, and cloning
 - insertion in well known potato cultivars
 - pyramiding technique: several genes are inserted together in the genome (less chance to select resistant *Phytophthora* isolates)
 - dynamic resistance management: various combinations of R genes inserted in the same known varieties

- Regulation of target genes by over expression or silencing
 - Examples:
 - the BASF potato Amflora which is the known variety Prevalent in which the gene coding for amylose production is silenced: the production of the desired amylopectine is then enhanced
 - over expression of the genes StSN1 and StSN2 producing antimicrobial peptides for the control of bacterial diseases.

- ✓ Potato genome sequencing achieved in 2009/2010
 - Potato Genome Sequencing Consortium (PGSC)
 - Following step = the understanding of the « blue print » genome map (relations between regions of interest...)

THE COLLABORATIVE POTATO BREEDING PROGRAM BETWEEN BRASOV (Ro) and LIBRAMONT (B)

- \checkmark Initiated in 2003, intensified since 2005
- ✓ Bilateral cooperation program between Romania and the Walloon Region in Belgium (2008-2010)
- ✓ Financial support is limited but appreciated
- ✓Not a huge program
- ✓ Traditional breeding
- ✓ Main objectives:
 - Iate blight resistance
 - good yield
 - good quality use (fresh market and processing market)

Recherches agronomiqu

Centre wallon de

THE COLLABORATIVE POTATO BREEDING PROGRAM BETWEEN BRASOV (Ro) and LIBRAMONT (B)

- choice of parents is carried out jointly,
- priority to late blight resistant genotypes (GASORE, BIONICA, SARPO MIRA, R clones,...)
- crossings made at Brasov Institute
- first years evaluation made in Libramont
- selected clones are evaluated in Barsov from the fourth year
- in case of succes, the new obtentions will be shared

✓ Preliminary results

- in the period 2005-2010, 60 crossings
- 375 clones from 31 crossings being evaluated at the moment

✓ Preliminary results with GASORE as parent.

- GASORE is a variety from Libramont (registred in 1996)
- robust: late blight, immune PVY, low susceptibility to bacterial diseases
- production of « babies » in France for the processing market
- crossed in the joint program with Laura, Impala, Victoria, Desiree
- at the moment, 14 advanced clones from 4 crossings

GASORE Late Blight Resistance Level compared to other varieties (Period 2005-2010)

Haulm destruction during vegetation period by natural infection

Gasore crossings: average behavior for 14 advanced clones from 4 crossings
 Other crossings: average behavior for 26 advanced clones from 12 crossings